Job Metrics
POST /api/v2/metrics/job
Description
The job
endpoint retrieves detailed performance metrics and statistics for a specific Arcanna job. This endpoint provides comprehensive analytics including accuracy metrics, confusion matrix, model performance data, and time-based statistics for job evaluation and monitoring.
Quick Start Examples
Get metrics for a specific job
curl -X POST "https://your.arcanna.ai/api/v2/metrics/job?job_id=1234" \
-H "X-Arcanna-Api-Key: your-api-key-here" \
-H "Content-Type: application/json" \
-d '{}'
Get metrics with custom time range
curl -X POST "https://your.arcanna.ai/api/v2/metrics/job?job_id=1234&start_datetime=2025-01-01T00:00:00Z&end_datetime=2025-01-02T00:00:00Z" \
-H "X-Arcanna-Api-Key: your-api-key-here" \
-H "Content-Type: application/json" \
-d '{}'
Get metrics with filters
curl -X POST "https://your.arcanna.ai/api/v2/metrics/job?job_id=1234" \
-H "X-Arcanna-Api-Key: your-api-key-here" \
-H "Content-Type: application/json" \
-d '{
"filters": [
{
"field": "arcanna.result_label",
"operator": "is",
"value": "Escalate"
}
]
}'
Request Parameters
Query Parameters
Parameter | Type | Required | Description |
---|---|---|---|
job_id | integer or string | Yes | The ID of the job to retrieve metrics for |
start_datetime | string | No | Start date for metrics (ISO 8601 format) |
end_datetime | string | No | End date for metrics (ISO 8601 format) |
Request Body (Optional)
{
"filters": [
{
"field": "string",
"operator": "string",
"value": "string"
}
]
}
Filter Parameters:
field
: The specific data field to apply the filter tooperator
: Comparison method ('is', 'is not', 'contains', 'exists', 'gt', 'lt', etc.)value
: The criteria used by the operator to filter the field
Response
Success Response (200 OK)
{
"confusion_matrix": [
[4490, 0, 0],
[0, 749, 0],
[0, 0, 37]
],
"overall_accuracy": 1.0,
"overall_f1_score": 1.0,
"overall_recall": 1.0,
"overall_precision": 1.0,
"metrics_per_decision": {
"Drop": {
"precision": 1.0,
"recall": 1.0,
"f1_score": 1.0,
"true_positives": 4490,
"true_negatives": 786,
"false_positives": 0,
"false_negatives": 0
},
"Investigate": {
"precision": 1.0,
"recall": 1.0,
"f1_score": 1.0,
"true_positives": 749,
"true_negatives": 4527,
"false_positives": 0,
"false_negatives": 0
},
"Escalate": {
"precision": 1.0,
"recall": 1.0,
"f1_score": 1.0,
"true_positives": 37,
"true_negatives": 5239,
"false_positives": 0,
"false_negatives": 0
}
},
"start_time": "2025-01-01T00:00:00Z",
"end_time": "2025-01-02T00:00:00Z",
"time_saved_minutes": 1250.5,
"active_model_id": "generic-1-1234-model-1747385873.hdf5",
"all_model_ids": ["generic-1-1234-model-1747385873.hdf5"],
"total_events": 5276,
"total_events_in_knowledge_base": 2516,
"total_events_with_consensus": 5,
"changed_consensus_after_training": {
"total_events": 0,
"top_events_ids": [],
"top_buckets_ids": []
}
}
Error Response (404 Not Found)
{
"error": "Job not found"
}
Response Fields
Core Metrics
- confusion_matrix: 2D array representing the confusion matrix of model decisions
- overall_accuracy: Mean accuracy across all decisions (0-1)
- overall_f1_score: Mean F1 score across all decisions (0-1)
- overall_recall: Mean recall across all decisions (0-1)
- overall_precision: Mean precision across all decisions (0-1)
Decision-Level Metrics
- metrics_per_decision: Object containing metrics for each decision type:
- precision: Precision score for this decision type
- recall: Recall score for this decision type
- f1_score: F1 score for this decision type
- true_positives: Number of true positive predictions
- true_negatives: Number of true negative predictions
- false_positives: Number of false positive predictions
- false_negatives: Number of false negative predictions
Additional Information
- start_time: Start time for the computed metrics period
- end_time: End time for the computed metrics period
- time_saved_minutes: Estimated time saved by Arcanna (in minutes)
- active_model_id: ID of the currently active model
- all_model_ids: List of all model IDs associated with this job
- total_events: Total number of events processed
- total_events_in_knowledge_base: Number of events in the knowledge base
- total_events_with_consensus: Number of events with consensus
- changed_consensus_after_training: Object containing information about events that changed consensus after training
- total_events: Total number of events that changed consensus
- top_events_ids: List of top 10 events IDs that changed consensus
- top_buckets_ids: List of top 10 buckets IDs that changed consensus