Skip to main content

Model Metrics

POST /api/v2/metrics/model

Description

The model endpoint retrieves detailed performance metrics and statistics for a specific Arcanna model. This endpoint provides comprehensive evaluation data including accuracy metrics, confusion matrix, knowledge base statistics, and model-specific performance indicators.

Quick Start Examples

Get metrics for a specific model

curl -X GET "https://your.arcanna.ai/api/v2/metrics/model?job_id=1234&model_id=model_v2.1.0" \
-H "X-Arcanna-Api-Key: your-api-key-here"

Get metrics using job name instead of ID

curl -X GET "https://your.arcanna.ai/api/v2/metrics/model?job_id=security-alerts&model_id=model_v2.1.0" \
-H "X-Arcanna-Api-Key: your-api-key-here"

Request Parameters

Query Parameters

ParameterTypeRequiredDescription
job_idinteger or stringYesThe ID or name of the job associated with the model
model_idstringYesThe unique identifier of the model to retrieve metrics for

Response

Success Response (200 OK)

{
"confusion_matrix": [
[4490, 0, 0],
[0, 749, 0],
[0, 0, 37]
],
"overall_accuracy": 1.0,
"overall_f1_score": 1.0,
"overall_recall": 1.0,
"overall_precision": 1.0,
"metrics_per_decision": {
"Drop": {
"precision": 1.0,
"recall": 1.0,
"f1_score": 1.0,
"true_positives": 4490,
"true_negatives": 786,
"false_positives": 0,
"false_negatives": 0
},
"Investigate": {
"precision": 1.0,
"recall": 1.0,
"f1_score": 1.0,
"true_positives": 749,
"true_negatives": 4527,
"false_positives": 0,
"false_negatives": 0
},
"Escalate": {
"precision": 1.0,
"recall": 1.0,
"f1_score": 1.0,
"true_positives": 37,
"true_negatives": 5239,
"false_positives": 0,
"false_negatives": 0
}
},
"model_id": "model_v2.1.0",
"is_recomputing_metrics": false,
"last_recomputed_timestamp": "2025-01-15T10:30:00Z",
"kb_count_per_decision": {
"Drop": {
"alerts_count": 2066,
"buckets_count": 10
},
"Investigate": {
"alerts_count": 429,
"buckets_count": 5
},
"Escalate": {
"alerts_count": 21,
"buckets_count": 4
}
},
"buckets_in_kb": 19,
"events_in_kb": 2516
}

Error Response (404 Not Found)

{
"error": "Model not found"
}

Error Response (422 Validation Error)

{
"detail": [
{
"loc": ["query", "model_id"],
"msg": "Model ID is required",
"type": "value_error"
}
]
}

Response Fields

Core Performance Metrics

  • confusion_matrix: 2D array representing the confusion matrix of model decisions
  • overall_accuracy: Mean accuracy across all decisions (0-1)
  • overall_f1_score: Mean F1 score across all decisions (0-1)
  • overall_recall: Mean recall across all decisions (0-1)
  • overall_precision: Mean precision across all decisions (0-1)

Decision-Level Metrics

  • metrics_per_decision: Object containing detailed metrics for each decision type:
    • precision: Precision score for this decision type (0-1)
    • recall: Recall score for this decision type (0-1)
    • f1_score: F1 score for this decision type (0-1)
    • true_positives: Number of true positive predictions
    • true_negatives: Number of true negative predictions
    • false_positives: Number of false positive predictions
    • false_negatives: Number of false negative predictions

Model Information

  • model_id: The unique identifier of the model
  • is_recomputing_metrics: Boolean indicating if metrics are currently being recomputed
  • last_recomputed_timestamp: Timestamp of the last metrics recomputation

Knowledge Base Statistics

  • kb_count_per_decision: Object containing knowledge base counts for each decision type:
    • alerts_count: Number of alerts in the knowledge base for this decision
    • buckets_count: Number of buckets in the knowledge base for this decision
  • buckets_in_kb: Total number of buckets in the knowledge base
  • events_in_kb: Total number of events in the knowledge base

Use Cases

  • Evaluate specific model performance before deployment
  • Compare performance between different model versions
  • Monitor model degradation over time
  • Analyze knowledge base composition and balance
  • Generate model-specific performance reports
  • Validate model training effectiveness